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SUMMER* 

PROBLEM 

To investigate certain properties of stochastic attrition processes—spe- 
cifically to formulate the general problem of the interaction of two groups of 
combatants when chance plays a role, to show what data must be given before 
the problem can be solved, to determine explicitly a complete solution of the 
general problem, to indicate a method for surmounting the practical difficulties 
encountered, and to carry out this method by analyzing the probability that a 
given side will win. 

FACTS 

F. W. Lanchester published1 an analysis of the effects of concentration of 
firepower in combat. He consideredtwo groups of forces opposing one another, 
assuming that the rate of attrition for each force depended on the strength of the 
opposition. He thus obtained a system of differential equations describing the 
behavior of the two forces. 

During World War Ilthere was a revival of interest in this theory of combat, 
though Lanchester's strictly deterministic treatment of the problem was mod- 
ified to Include the random fluctuations, which inevitably occur. Fundamental 
work in formulation of the problem in a stocnastic framework was carried out 
by the Operations Research Group in the Department of the Navy; such formu- 
lations are now being used at ORO in combat models. 

DISCUSSION 

In applying a stochastic analysis to Lanchester's theory of combat this 
memorandum considers a certain Markov stochastic process characterized by 
the initial state and the two functions 0 and 0. The probability that the system 
remains in a given state (m,n) throughout a time interval of length t isc"^m'',). 
Alternatively it i8e~t/f^m'n\ where T(m,n) is the expected duration of the sys- 
tem in the state (m,r.) andT(m,n) = l/ty(m,n). The probability that, leaving the 
state (m,«),the system goes to the state (m,n -1) is a(m,n); the probability that, 
leaving the state (m,n), it goes to t[ie state (m - l,n) is 1 -o(m,n), which is also 
called ß(m,n). To find p(a,b,t;m,w) is to determine the probability that, starting 
at (m,n),the system will be at (a,b) after the elapsed time t. Winning means the 
complete annihilation of the opposing side; the probability that the first side 
wins from state (m,n) is denoted by P(m,n). This probability satisfies the dif- 
ference equation P(m,n)=a{m,f}) P(m,n - l) + /3(m,n) P(ffl-l,n). 
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SUMMARY 

CONCLUSIONS 

1. The initial state, the expected duration in each possible subsequent 
state, and the chances of the transition from each state to the two possible im- 
mediately succeeding states completely determine the stochastic process. 

2. Exact expression for the probability that a given side wins is too com- 
plicated to be of practical use, but it is demonstrated that it ia possible to find 
a simple useful approximation. 

3. The two functions 0 and a, which characterize the stochastic process, 
may be expressed in terms of more readily accessible data, m-n^y, the rate 
of fire and the single-shot kill probability, using the basic assumptions from 
Lanchester's original work. 

.CK» ^ 
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A STOCHASTIC ANALYSIS OF LANCHESTER'S THEORY OF COMBAT 



INTRODUCTION 

An analysis of the effects of concentration of firepower in combat was made 
by F. W. Lanchester in 1916.  He presented a system of differential equations de- 
termining the behavior of two groups of forces opposing one another, assuming 
(or each that the rate of attrition depended on the strength of the opposition. 
Lanchester's theory of combat was deterministic; his differential equations im- 
plied that the future was completely determined. During World War II, however, 
a more realistic approach to the problem was undertaken, and a theory allowing 
for chance fluctuations was created.  It is this stochastic theory which is studied 
here. 

In this paper an attempt is made to perform three services for persons 
working in this field at the present time: 

(a) To provide a general formulation of the problem, in terms of which the 
various specialized results of other groups of investigators can be interpreted. 
This is done in the first section. 

(b) To exhibit a complete solution of the general problem as thus formu- 
lated.   This is done in the second section.  Although the solution is complete it 
is, in its general form, of little practical use.  In various special cases, how- 
ever, this solution is useful in studying certain properties of the solution.  These 
will readily occur to the worker in the field. 

(c) To indicate a method by which the practical difficulties encountered in 
studying the general solution can be surmounted. This is done in the third sec- 
tion, largely by exhibiting the method as applied to a specific aspect of the gen- 
eral problem. Although the problem studied in the third section is quite special, 
it seems clear that the asymptotic methods used there can be extended to other 
problems arising from the solution given in the second section. Work along these 
lines is now in progress. 

To obtain the desired generality the formulation of the problem in the first 
section is necessarily abstract.  It is proposed to give here a concrete formula- 
tion of the problem so that some meaning can be attached to the ideas in the first 
section. 

Consider two opposing forces called the "first side" and the "second side." 
The forces try to destroy one another; hence, as time goes on, the strengths of 
the two sides diminish.   Letx(t) denote the number of survivors on the first side 
at time t, and let y(t) denote the number of survivors on the second side at time 
t.   The fundamental point of view in this paper is that x(t) and y(t) are random 
variables:  they are not completely determined beforehand, but the probability 
that x(t) and y(t) have given values is.   Specifically, the question is "What is the 
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probability p(a,b,t; m ,n) that there will be o and b survivors on the first and 
second sides, respectively, at time t, if there were initially m and n members 
on the two sides?" 

The first section is concerned with the precise formulation of this problem, 
in addition to a discussion of the parameters that serve to characterize the ef- 
fectiveness of each side in combat.  For completeness the differential-difference 
equations for the problem, used by many workers in stochastic processes, are 
also derived.   The asymptotic devices used in the third section, however, are not 
based on these equations. 

In the second section p(a,b,t; m,n) is completely determined.  It is exhibited 
however as an integral in which the complicated structure of the integrand tends 
to obscure the understanding of the precise nature of the solution.  This complex- 
ity arises mainly from certain combinatorial difficulties associated with "paths," 
defined in the first section and examined more fully in the second.  The situation 
is somewhat analogous to the situation in certain one-dimensional stochastic 
processes, where the exact solution is apparently quite useless. 

If a useful solution to the problem of finding p{a,b,i; m,n) cannot be given, 
then an effort can be made to answer related questions. One question of evident 
interest is this:  "What is the probability that the first side will win?" Here 
winning means the destruction of the opposing force before a given side is anni- 
hilated. Again, a precise answer is complicated beyond usefulness, but a useful 
approAimate answer can be given. In the third section this approximate answer 
is found.  Comparison of the exact solution and the approximation in certain 
numerical examples shows that the agreement is surprisingly good.  These ex- 
amples are given in the last section. 

It must be admitted that many problems remain to be solved before a co- 
herent stochastic theory of combat i£ evolved.  This memorandum claims only 
to frame the problem in a precise way, then to formulate an exact solution of 
this problem (to spare future workers the labor of writing out this solution), and 
finally to present a useful approximation to the probability that one side will 
win. Among the many other problems that remain, the three following are of 
special interest: 

(a) What is a useful approximation for p(a,b,t; m,rt)? 
(b) Find an approximation for the expected number of survivors on each 

side in terms of time.  How close is this to the solution of the classical deter- 
ministic Lanchester equations? 

(c) How, if at all, can the central limit theorems of Bernstein and Ldfeve 
for dependent probabilities be used here to simplify the derivation of asymptotic 
formulas ? 

It is hoped that this memorandum may help to stimulate work on these re- 
lated problems. 
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STATEMENT OF THE  PROBLEM 

Consider a physical system, the state of which at any instant t is described 
by an ordered pair of nonnegative integers [i(t ),y(t)].   The system is to be ob- 
served, starting at some convenient time which will be taken as zero.  The actual 
behavior of the system is thus completely prescribed by two functions, x and y, 
defined on the set of all nonnegative real numbers, with values in the set of non- 
negative integers.  The possible behavior of the system is circumscribed by the 
following two assumptions: first, that both x and y are nonincreasing functions, 
i.e., if t^t, thenxO') < x(t) and yd') ^y(t); and, second, that when the system 
leaves any state (a,b), it must proceed to the state (a-l,b) or the state (a,b-l). 

Fig. 1—Typical Graphs of x(f), yit). 

The set of all possible modes of behavior of this system may thus be identi- 
fied with the set of all ordered pairs of nonincreasing, nonnegative, integral- 
valued functions, defined on the set of all nonnegative real numbers, such that 
both functions in the ordered pair are not discontinuous at the same number, and 
such that at a point where it is discontinuous, a function decreases by one unit. 
The set of all ordered pairs of such functions will be denoted by S.  For a further 
description of the sort of situation envisioned here, the reader is referred to work 
by Koopman, cited in Morse and Kimball. 

An element of the set S is an ordered pair of functions. An example of the 
graphs of such an ordered pair of functions might look like Fig. 1. 
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An alternative (and not so informative) method of representing this behavior 
graphically is to show the path followed by the system, disregarding the time of 
transition from one state to another.   The path diagram which would correspond 
to the situation shown in Fig. 1 is given in Fig. 2. 

It should be evident that each element of S (i.e., each ordered pair of func- 
tions of the type being considered) determines uniquely a graph in the fashion of 
Fig. 2.  On the other hand, to each graph of the type shown in Fig. 2, infinitely 
many elements of the set S will generally correspond (or, equivalently, infinitely 
many graphs like Fig. 1). 

Fig. 2—The Path for Fig. I. 

Thus far the discussion has centered on the possible representation of the 
behavior of the system.  It is, of course, a much more fundamental problem to 
discuss the mechanism leading to a particular mode of behavior for the system. 
It might be, for example, that the first coordinate of the system decreases by 
one unit at a quarter past and a quarter to every hour, but the second coordinate 
decreases by one unit every hour on the hour.  In such a case, only the initial 
state of the system need be known in order that the state of the system be known 
at any subsequent time.  Under these conditions the process is said to be deter- 
ministic.  The process considered in Morse and Kimball3 is deterministicT- 

This is just the situation that will not be considered here.  Instead it will 
be assumed that chance affects the system, so that when the initial state of the 
system is known, only the probability that the system will be in a certain state 
at a subsequent time is known.  Such a process is said to be "stochastic." Morse 
and Kimball also consider a stochastic process.4 For a more detailed but more 
technical description of stochastic processes in general, the reader is referred 
to Doob.5 

As a generalization of the situation in a great many practical problems 
the following assumptions are made for the stochastic process being considered 
here: first, that it is a Markov process, and, second, that it is a stationary 
process.  For the technical definitions of a Markov process and a stationary 
process, see Doob.8 Both terms will be used here "in the strict sense." An 
intuitive interpretation of these assumptions follows. 
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The assumption that the process is a Markov process can be expressed 
intuitively by saying that, from any instant onward, the behavior of the system 
may depend on the state of the system at that instant, but it certainly does not 
depend on the previous history of the system.    Thus, if 0 S tj < t2 < . . . < t <:, 
the probability that the system is in state (a,b) at the instant t, given that it^vas 
in state (oj.bj) attj, (a2,b2) att2, . . ., and {an,bn) at tn , depends only on a, b, i, 
an, bn, and tn, not on the states at the earlier instants.  Consequently only prob- 
abilities of the form p(c,d,t; a,b,s) need be considered, which denote the prob- 
ability that the system is in state (c,d) at the instant t, given that the system is 
in state (o,5) at the instant s, with s < t. 

The second assumption (that the process is stationary) introduces a fur- 
ther simplification.  It means that what happens during a given time interval 
depends only on the state of the system at the beginning of the interval, and on 
the length of the time interval-not on the instant at which the time interval be- 
gins.  Consequently p(c,d,s + t ; a,b,s) = p(c,d,t; a,b,0), which might as well be 
(and which will be) denoted by p (c, d, t; a,b). 

In summary this investigation is to be concerned with the probabilities 
p(c,d,t; a,b), which denote the probability that, if the system is at any instant 
in the state (n,b), then it will be in the state (c.d) after a time interval of 
length t. 

Certain properties of p(c,d,t; a,b), which are consequences of the preced- 
ing assumptions, will now be dprived. 

Suppose now that the system is initially in a state (m,n).   The probability 
that it will proceed to a state (a,b) during an interval of time of length s is 
p(a,b,s; m,n), and the probability that it will then proceed to a state (c,d) during 
a succeeding interval of length t is p(c,d)t; a,b), since the system is in state 
(a,b) at the beginning of this second interval.  Thus the probability that, if the 
system is initially at (m,n), it proceeds to (a,b) during the interval of length s 
and thence to (c ,d) during the succeeding interval of length t is p(a,b,s; m,n) • 
p(c,d,t; a,b). 

Consider next the probability that, if the system is initially at(m ,w), it proceeds 
to (c,d) during an interval of lengths+t.  It is, of course, denoted by p(c,d,s+t ; 
m,n).  But, this can also be expressed as a sum of products of the type just con- 
sidered.  For at the end of the first interval of length s the system must be in 
some state between (m,n) and (c,d), inclusive.  Since it can be in only one state 
at a given instant, the various possibilities are mutually exclusive.  Hence, 
p(c,d,s+t; m,n) is the sum of all the probabilities of the compound events de- 
scribed in the preceding paragraph; i.e. 

m        n 
p(c,d, s + 1; m,n) = £    H   P^,b,s; m,n) p{c,d,t; a,b). (1) 

Equation 1, which will be found to be fundamental in the subsequent work, is 
essentially a special case of Feller's7 Eq. 9.2 or of Doob's8 Eq. 1.2'. 

A special case of Eq. 1 arisec if c =m and d =n.  In this case 

p(m,n, s + t; m,n) =p{m,n,s; m,n) p{m,n,l; m,n). 

[The appropriate verbal interpretation of p(m,n,f; m.n) is the probability that 
the system remains in the state (m,n) throughout a time interval of length t, 
if the system is in this state as the beginning of the time interval.] 
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Because p is a probability function, it follows from the general theory of 
stochastic processes that 

p{m,n.l;m.n) = e-t^m'n\ (2) 

where f m,n) is nonnegative.  Indications of the method of proof of this result 
are fou >d in Doob. 

If certain (unnecessary) assumptions are made about the function p, a 
simple proof of Eq. 2 can be given.  The special case of Eq. 1 under considera- 
tion is an equation of the form 

f(s+t)-f{s)f(t). 

Differentiate with respect to s; then 

Now set s equal to zero, obtaining 

f'to-efu), 
where c = f'(0).  This is a differential equation whose solutions are of ths form 

f(t)=ae
ct. 

where a is an arbitrary constant.  Now in the special case of Eq. 1, which is of 
interest here, the condition that p(m,n,0; m,tt) should equal one requires that a 
be one, and the condition thatp(m,n,t; m,n) be less than one for positive t re- 
quires that c in the exponent be negative.  This establishes Eq. 2. 

Of course, this "proof has assumed that all the functions encountered 
possess derivatives.  This is an unnecessary assumption, as the work in Doob 
shows. 

Because of the importance of the facts expressed by Eq, 2, the equation is 
given the following verbal interpretation: The probability that the system does 
not change from the state (m,n) during an interval of time of length t  is 

Consider next the variate (or «random variable") Tm n whose value is tho 
length of time during which the system remains in the state (m,n). 

Let F denote the (cumulative) distribution function for TmB ; i.e., F(u) is 
the probability that the observed value of the variate Tm „ is less than or equal 
to u .   Then, for any positive number u, 

= Pr {the system is no longer in (m,n) after a time u} 
= 1 - Pr {no change occurs during the time «} 
= 1 -e-«0(m,n) 

while F(u) = 0 if u is zero, or negative. Obviously, F'(u) = 0. if u < 0, and F'(u) = 
0(ffl,w) e-u^m'^ ,ifu>0. 

The expected value of TM, which will be denoted by T(m,n), is given by 
the following procedure: 

. '»4(»Ml) e-,"'i(m-B) du = l/dlm.n). 
o 

r(m.B) = / udFiu) = f^{m,n) e-^m,») rfu = y^^ 

Thus 0(m,n) can be interpreted as the reciprocal of the average duration of 
the system in the state (m,n).   Perhaps it should be stated explicitly that the 
symbol T( m,n) will be used throughout the sequel to mean the expected value of 

m,n 
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Up to this point the discussion appears to bo concerned principally with 
the probability that the system does not undergo any changes of state during a 
given interval of time.  The next part of the discussion is primarily concerned 
with establishing the notation necessary for considering what happens when the 
system does change its state. 

Suppose the system is in a certain state (m,n).  By the second of the funda- 
mental assumptions made at the beginning of this section, the system can pro- 
ceed only to states (m- l,n) and (m,n- 1) when it leaves the state (m,n).   Let 
cKm.n) denote the probability that the system, on leaving the state (m,n), proceeds 
to the state (m,n- 1), and let ßim^) denote the probability that the system, on 
leaving the state (m,«), proceeds to the state (m - l,w).  Of course, j3(m,n) = 
1 - a( m ,n). 

It may now be intuitively evident that if the initial state of the system (cor- 
responding to t =0), and the two functions 0 and a are given, then all the prob- 
abilities p (a, l),t; m,n) are completely determined.  In any event, this is the case, 
as the following discussion will show. 

The principal objective now is to derive two differential-difference equa- 
tions that must be satisfied by p(a,b,t; m,n).  Each such equation is based on 
Eq. 1. 

First Equation.  Differentiate Eq. 1 with respect to s, and then set s equal 
to zero.   The result is 

m       n 
p3(c,(l,l; m,n) =22   11 PfcCo^Oi •»»'») p(c.dft; a,b), 

in which the subscript 3 denotes the first-order partial derivative with respect 
to the third argument; i.e., 

p3{c,d,t; m,n) = lim [p{c,d, t + A; m,n) -pic,d,i; m,n)]/A. 
A-»0 

Second Equation.  Differentiate Eq. 1 with respect to t , and then set I 
equal to zero.  The result is 

m        n 
p3(c,d,s; m,n) =  £]    Z! P(a'*'s! m*a) P^c.^.O; a,b). 

o = e   fc=(/ 

Now it turns out that most of the terms that appear in the sums in these 
two equations are zero. It is clear from Eq. 2 that p3(a,b,0; a,b) = -0(a,b). It 
can be shown by the general theory, or directly by quite simple arguments, that 

P3(o, 6-1,0; o,6) = cn(a,b) 0(a,i) 

P3(a - 1, 6, 0; a,b) = n(a,b) <i>(a,b). 

and that all the other derivatives are zero.  The general theory is given in 
Doob;10 an alternative treatment, with less generality, is contained in Feller.11 

If, in the second equation, the -ariable s is replaced by i, the two equations 
can be written now as 

(d/dt) p{a,b,t; m,n) = - 0{m,n) p{a,b,t; m,n) 

(3) 
+ a{m,n) (^(m,«) p(a,6,t; m, n - 1) + p(m,n) </,{m,n) p(a,b,t; m - l,n) 

and 
(d/dt) p(a,b,t; m,n) = ~^(a,i) p(a,6,£; m,n) .ä. 

(4) 
+ a(a> 6 + 1) ^{a, 6 + 1) p(a) 6 + 1, t; m,n) + (Ha + l, 6) 9(0+ 1, 6) p(o+ 1, b,t; m,n). 
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Clearly the solutions of these equations will depend only on the coefficients 
which are determined by 0 and a (since ß=l-a), and on the initial state (m,«). 
Hence, the validity of the earlier assertion regarding the dependence of p(a.M: 
m,n) on 0 and a has been established. 

Equations 3 and 4 correspond, respectively, to Eqs. 1.7 and 1.7' in Doob.12 

Such equations are frequently distinguished by the adjectives "backward" and 
"forward." Equation 3 is the backward one for this process.  For a further 
discussion of these two equations, consult Doob,13 or Feller.14  Note also that 
an analogue of Eq. 3 appears in Morse and Kimball.15 

It is now perhaps appropriate to summarize what has developed so far. 
A certain stationary Markov stochastic process is under consideration. 

The process is characterized by the initial state, and the two functions, 0 and 
a.  The probability that the system remains in a given state (m,n) throughout a 
time interval of length i is e-^O".»).   Alternatively,  it is c -V'OIM^ Where 
Timn) is the expected duration of the system in the state (m,ii), and rU.n)  = 
l/0(m,n)    The probability that, on leaving the state (m,n), the system goes to 
the state (m n- 1) is a{m,n); the probability that, on leaving the state (m,n), it goes 
to the state (m-l,n) is 1-Qf(m,n), which is also called /3(m,n). 

Finally, if p(a,b,t; m,n) denotes the probability that the system, starting at 
state (m,n), is in state (a,b) after an elapse of time l, then p must satisfy both 
Eqs. 3 and 4. ' 

The fundamental problem, which will be solved completely in the next sec- 
tion can now be stated: 

Given the two functions 0 and a, write out explicitly p (a,b,t; m,n). 

■■■ 
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EXACT DETERMINATION OF THE PROBABILITIES p(a,b,t; m,n) 

In this section p(a,b,t; m,n) will be determined exactly.  However, it will 
be seen that the result, unless o is close to m, and b is close to n, is of little 
immediate practical interest in the general case. 

An obvious possible way to determine p(a,b,t; m,n) is to solve the partial 
differential-difference equations, Eqs. 3 and 4 of the preceding section.  It is 
the author's experience, however, that this method does not lead—in any evident 
way-to a form of the solution that is convenient for the applications that have 
given rise to this research.  Consequently the problem will be attacked by meth- 
ods from the general theory of probability. 

To findp(a,b,t; m,n) is to answer the question, "What is the probability 
that, starting at (m,n), the system will be at (a,b) after an elapsed time t ?" 

For the system to start at (m,rt) and later be at (a,b), it must proceed along 
one of the paths (as in Fig. 2) that join (m,n) to (a,b).  It may move along any such 
path, and motions along different paths are mutually exclusive events. 

It is easy to compute the probability that the system will move along a given 
path.  For example, suppose the system, initially at (5,7) proceeds through (5,6), 
(5,5), (4,5), (4,4), (4,3), and (3,3) to (3,2).  The probability of going from (5,7) to 
(5,6) is a(5,7); from (5,6) to (5,5) is a(5,6); from (5,5) to (4,5) is j3(5,5); etc. 
Hence the probability of moving along this particular path is Q(5,7) • a(5,6) • 
0(5,5) • a(4,5) • a(4,4) . |3(4,3) ■ a(3,3). 

Similarly, if there is a quite arbitrary path from (m,n) to (a,b), there would 
be a certain a for each downward step and a certain ß for each leftward step. 
The product of these a's and ß's would give the probability of moving along this 
particular path. 

In order to present these ideas as clearly as possible and to facilitate cer- 
tain future discussions it seems desirable to introduce the following method for 
describing paths: 

Consider a path from (m,n) to (a,b).  Each transition consists of a motion 
either one step to the left (the first coordinate decreases by one unit) or one 
step down (the second coordinate decreases by one unit). A convenient way to 
describe the path is to write down a sequence of m - a zeros and n - b ones, a 
zero corresponding to a motion to the left, and a one corresponding to a motion 
down. In this system, the path described a little earlier, beginning at (5,7) and 
ending at (3,2), would be written 1101101, 

To formalize this procedure in the general case, proceed as follows:  Let 
x = m - a and let y = n - b.  Consider the set, I     , of all positive integers, which 
in their usual binary representation contain exactly y ones and no more than x 
zeros.  If, in the usual representation, the integer contains y ones andx-c zeros, 
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letc zeros precede the usual representation.  This will be called the "modified 
binary representation."  For instance, if x =4 and y =2, the integer 6 usually 
represented by 110 would be written 000110 in the modified representation.  If 
k is any integer in I    , and if the modified representation of fc is (^ • • • ix+y , 
define 6A • as i,.  Thus, if x = 1 and y = 2, one would have ö-j = ^3 = 1 and ^2=0, 
since 5 = 101. 

Now there is, in the fashion previously described, a one-to-one corres- 
pondence between the integers in the set \      and the paths connecting (m,n) to 
(a,b).   Let Tjk denote the path that corresponds to the integer fe in 1     .  Then 
6^ =0 means that the jth transition for ^ is to the left, and 6^ =1'means that 
the jth transition is downward. 

Notice that if 6jti ■ 0, the second state is (m - l,n); if öA1 = 1, the second 
state is (m, n -1). In either case, the second state is (m - 1 + ß^,« - bkl). In 
general, as can easily be seen, the system will be in state 

r r 
(m-r + ^  Bki.n- £ bkj) 

/«l H 

after r transitions, provided that r s x + y. 
In this way the notation that has just been introduced enables one to talk 

freely, but specifically, about the motion of the system. 
An example of the use of this notation is provided in writing down the prob- 

ability, say pA(a,b; m,n), that the system proceeds from the state (m,n) to the 
state {a,b) along the path ■nk. It is known from the earlier discussion that pA(a,b; 
m.n) is a product of certain a's and ß's, which are completely determined by the 
path, but in ordinary terms it is hard to state just which a's and ß's are to be used. 

Consider the path irA. Define ykl as a(m,n) if bkl =1, and as /3( m,n) if öAl = 0. 
In general, define y^ r + j, for r = 0, l', . . ., x + y - 1 as 

and as 

Specifically, 

/•I M 

^(m-r + 2: V«-£S4/.)if V+l=
0- 

/-I /-I /•! /-I 

Now, 

pk(a,bim,n)- ^Ykj- 

A summary of the results up to this point of the discussion might indicate 
that a notation has been introduced that facilitates writing down the probability 
that the system, starting at (m,n), travels a certain path to (a,b). 

Of course it is necessary to know more, e.g., the probability, say G£(a,b,t; 
m,n), that, if the system travels the path ^ from (m,n) to (a,b), it will be at 
(a,b) at a certain time t. If G^a^b.t; m,n) were known, p(a,b,t; m,n) would also 
be known, since 

p(a,6,(; m,n) »   J^      Pk(aM m.'») Gjt(<»,6,t; m,n). 
k€l. «.x 
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Perhaps the simplest way to find Gk(a,b,t; m,n) is to use the variates Tc d 
discussed in the preceding section, dealing with the statement of the problem. 
If it is known that the system moves along the path ■nk, then it will be at (a,b) 
at time f if and only if Tm n + . . . + Toi > t, but the sum of all these variates 
except the last is £ t.  The variates appearing in the two sums are to be those 
arising along the particular path TrÄ considered. 

It is possible to be more specific about the variates present in these sums 
if the previous notation for the description of the path is used. 

The state in which the system will be found after r transitions as it pro- 
ceeds along nk was written out earlier.  If this state is denoted by [m(fe,r),w(fe,r)], 
the earlier result was that 

r 

m{k,r)'m-r + £]  6^ 
/■I 

and 
r 

n(k,r) - n - £  «t/ . 
/■I 

The variates that must be considered on Trk are T^^ ^ r), for r = 0, 1, 
. . ., x +y.  The probability Gk{a,b,r, m,w), then, is the probability of the compound 
event 

x+y-l x+y 

£    Tm{k.r), «(ft.r) < ' and   £    Tmik.r), n(*,r) > ' ' 

The probabilities that enter into the computation of the probability of this 
compound event can be found quite directly by the ordinary method of charac- 
teristic functions. 

Let fcd denote the characteristic function for the variate Tcrf; then 

fcd iu) - f .*. 4 M) .-^ ^ =^L . ^L^. 
J (p{c,d) - tu      1 -1« r(c,d) 
0 

Now the variates  T    , . . ., T^j are independent, since the process is a 
stationary Markov process.  Consequently the characteristic function for the 
sum 

x-fy-l 

H     Tm(k,r), n(k.r) 
r-0 

is the product 

n
ft    fmU.r), nik.r) ' 

and the density function, 3^(5),for this sum is determined by the equation 

x*y-l ! 

*U>-^/ 
   du. 

r.O   1 - iu r W*,»-), «ik,r)] 

The probability that Ta)b > t - s is f**-) ^(a•6,.  Since 

Gk{a,b.tim,n) - J   fj (s) e-^-4) ^a'6) ds. 
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it is found that 
I oo 

Gk(a,b,tim,n)~j e-^M^U-    f 
x+y-1 

.-ius      n 
rr.0     1 - iu T[m(k,r), n(k,t) 

du,   ds. 

This expression can be simplified in two ways.  First, for neater notation, 
write mkr  and n^. instead of m(k,r) and nik,r).  Second, interchange the order of 
integration, integrating first with respect to s, and then with respect to u.   The 
integral involving s can be evaluated easily; it is found that 

i    r x*y-1 i 
Gk(a,b,t; m,n) = — U . 

,-iut _e-t<j>(a,b) 

<f>(a, b) - iu 
du. 

To complete the explicit deteir.nation of p(a,b,t; m,n), merely combine 
this result with the earlier result coi cerning p4(a,b; ni,n).  The combination of 
the two expressions is rendered more compact by writing 

x+y-1 
n 

r>0 
• k,r+l 

The final result is thatp(a,b,t; m,n) is given by 

1    _         f   x+y-1            Yk.r+l             emtut -e-'^"^ 
—   Yj [J          (/a_ 
2n kd        J      fO     l~iuT(mkr'nkr' <j>ia,b) - iu 

M, y   —oo 

The validity of the criticism made against this result at the beginning of 
this section should now be evident. If x + y is at all large, the integrand can be 
[for general T {mkr,nkr)] quite complicated, and it is difficult to apprehend the 
nature of the solution. 
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THE PROBABILITY OF WINNING 

In the introduction to this memorandum it was pointed out that the problem 
under investigation arose from a definite problem in the theory of combat.  The 
theoretical development in the previous sections ignored completely any concrete 
interpretation of the results; the work was purely mathematical in character. 

This section is devoted to the study of a problem arising from the combat 
interpretation of the stochastic process described in the first two sections. If 
the stochastic process is considered as describing the interaction of two groups 
of combatants, then one question of quite great interest arises:   "What is the 
probability that a given side will win?" 

Now, of course, the concept "winning" must be clarified. A simple defi- 
nition (and the one that will be used here) is that winning means the complete 
annihilation of the opposing side.  The symbol P(m,n) will denote the probability 
that the first side wins, if there are initially m combatants on the first side, and 
n combatants on the second side. 

Relevant notation from the previous sections will be preserved here. In 
particular, a(m,n) will denote the probability that, if there are m combatants on 
the first side and n combatants on the second side, then the next casualty to oc- 
cur will be on the second side, and ß{m,n) will be 1 -a(m,n).  More briefly, a{m,n) 
is the probability of having the system proceed from (m,n) to( m,w- 1), and ß(m,n) 
is the probability of having the system proceed from (m,n) to ( m- l,n). 

If the system is in state (m,n), there are two mutually exclusive ways in 
which the first side can win.  The system might proceed to the state (m,n-1), 
with the first side then winning.  The probability of this is ö(m,n) P(:n,n- 1).  Or, 
the system might proceed to the state (m-l,n) with the first side then winning. 
The probability of this is /3(m,n) P (m - l,n). Since these are mutually exclusive 
events, the probability that the first side wins from the state (m,«) is the sum 
of these two probabilities. The following difference equation is therefore 
obtained. 

P(m,n) = a(m)n) P (m,n - 1) + j8(Bi,n) P (m - l,n). (5) 

Equation 5 is the fundamental equation for the work that follows.  It is of 
some interest to observe that it is a consequence of Eq. 3. It may be obtained 
from Eq. 3 by setting b = 0, summing for a = i, 2 m, and letting t become 
infinite.  The partial derivatives on the left all approach zero as t becomes in- 
finite.  Equation 21, which appears later, is similarly related to Eq. 4. 

A brief reflection will show that if P(m,0) is known for m = 1,2, . . ., and 
if P(0,n) is known tor n = 1,2 then Eq. 5 completely determines P(ffl,ii) at 
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all lattice points in the first quadrant (i.e., at all points having integral coordi- 
nates).   On the other hand, from the definition of P(m,n), it is obvious that 

P(m,0) = 1  for  m = 1, 2, . 

P(0,n) =0  for   n =1, 2, ., 
(6) 

These equations will occasionally be referred to as the "boundary conditions." 
In principle P(m,n) could now be written out explicitly by solving Eq. 5.  If 

the coefficients a(m,n) are not too complicated, this is, in fact, possible.  For 
example, suppose that a(m,n) is a constant, say a.   Then 

P(m.n)= £  -          a'Ml-oO*. 
A=0 (n - 1)! k\ 

(7) 

Or suppose that 

a(m,n) 
am 

am + ßn 

where a and j3 are constants.  Then it can be shown that 

\m~k *»+» r [(«*//« +1] pun)  /«V   r (ir-*  ^-l^/Bl» (« 

The simplest way of verifying the truth of these two assertions is to observe 
that the given function satisfies both Eqs. 5 and 6, and then appeal to the obvious 
uniqueness of the solution. 

Now if m and rt are at all large, both Eqs. 7 and 8 offer difficulties from the 
point of view of computation as well as fro .i the point of view of simple under- 
standing of the nature of the solution.  Indeed Eq. 8 is especially bad, since it 
involves the differences of numbers that may be quite large. 

For these two reasons the project of obtaining the exact solution of Eq. 5 
will be abandoned. Rather the problem to be considered here is that of finding 
a simple approximation to P(m,n), which will be valid if ri+ n is large. 

It should be intuitively evident that without some restriction on the behavior 
of the coefficients a(m,n), general results on the asymptotic behavior of P(m,n) 
cannot be obtained.  Fortunately the very nature of the combat situations being 
investigated here imposes just such a restriction, which will now be stated. 

Consider the two numbers a(m,n) and Q(m + l,n).  These represent the prob- 
abilities of a casualty on the second side when the first side has strengths of 
m or m +1.  It is certainly reasonable to assume that the stronger the first side, 
the greater the probability of a casualty on the second side; i.e., to assume that 
a(m+ 1,H) sa(m,n). A similar discussion shows the reasonableness of assuming 
that cr(m,n)^a(m,n-l). 

What has just been found to be reasonable will now be made into a formal 
assumption: 

Throughout the rest of this section it will be assumed that 

a(m + 1,») > a(m,n) 

a(m,n) > a(m,n - 1). 
(9) 

It may be noted that all the particular forms of a(m,n) that the author has 
seen in the literature on Lanchester's theory satisfy these assumptions. 
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The process for finding an approximation to P(m,n) is based on the obser- 
vation that the value of P at any point on the straight line whose equation is 
m + n = N is a linear combination of the va'ues of P at certain points on the straight 
line whose equation is HS + H » N - 1,  As the problem now stands a(m,n) is defined 
only if m and n are not both zero and neither is negative.  To facilitate the lan- 
guage in the following discussion it is desirable to extend the domain of definition 
of o.  From now on it will be assumed that a{m,n) is defined for all m,n (positive, 
negative, or zero) for which m+n a 1.  For negative values of the arguments the 
following conventions are to hold: 

a(m,n)=a(m,0) for n<0; 
a(m,n)=a(0,n) for m<0; 
ß(m,n) = l-a(m,n) for all m,n. 

It might be noted that this convention regarding values of a(ffl,n) in the fourth 
and second quadrants preserves the fundamental assumption of Eq. 9.  It might 
also be noted that this extension of a(m.n) to the fourth and second quadrants is 
not essential to the arguments that follow; rather it simply serves to eliminate 
certain unimportant details that would otherwise have to be discussed. 

It is now instructive to consider the values of ooth P(m,n) and a(m,n) on the 
straight line for which m+ n = k. (Although the functions are defined only for the 
lattice points, values can be interpolated for both functions so that the following 
observations are valid.) 

First, a{ m,k - m) is a monotone nondecreasing function of m, and 0<a(m ,fe - m) 
<1. 

Second, P(m,fe-m) is a distribution function; i.e., 
i)   P(m,fe -m) is a nondecreasing function of m 
ii) lim    P(m,fe-m) = 0 

iii)lim     P(m,fe-m) = l. 
fn-*oo 

This suggests the possibility of trying to approximate P(m,n) by a standard dis- 
tribution function—for instance, tbe normal distribution function.  For each 
value of fe and m there certainly exists a number H'A (m) such that 

9Am) 
P{m,k-m) =-=    f     e-*'2 dt; 

however, the precise form of ^(m) is irrelevant.  It must be remembered that 
only an asymptotic formula is being sought. 

Consider what would happen if a(m,n) were a constant, a.  The classical 
theorem of De Moivre and Laplace regarding the approximation of the Bernoulli 
distribution by the normal distribution would show that 

am-bn 

— P e-H'2 dt. 

for a proper choice of a and b, is asymptotically equivalent to P(m,n). 
It is certainly reasonable to ask whether a similar approximation might 

not also hold in the prcblem considered here for general coefficients aim,n). 
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-  . . 

At any rate it suggests the plausibility of the following change of variables, and 
that, in fact, is all that the preceding discussion was aimed at.  To repeat: The 
following change of variables is not capricious; it is suggested by standard 
classical theorems. 

Let 
N = m+n (10) 

u = (am - 6n)/(\/ffl + n) , 

where both a and b are positive numbers to be determined later. Because a 
and b are positive, the transformation from (m,ii) to (u,N) is nonsingular.  The 
inverse transformation is 

-n = (WV + u VW)/(a + 6) 

»-(a/V-Bv^Aa + i). (    ' 

Let 

P(m,n) = Pmtn Kam - MAVm+i)] - PN{u) 

a{m,n) = aH+n [(am - 6n)/(>/m + n)] ^«^(tt) (12) 

ßNW  = l-a^u). 

Then 

P(m.n - 1) = P^.j [(am - in + 6)/(Vm + n - 1)1 = P^.j [u v^7^m) + b/JW^l)] 

and 
P(m - U) = ?„,,„_! [(am -in-a)/(y/m + n - I)] = P^.j [u jN/(N - 1) - a/y/W^l)]. 

The fundamental difference equation (Eq. 5) now becomes 

PN(u)= aN(u) P^lu s/N/iN -1) + b/y/W^T)] + /9W(") Pff-i t" \W/W - 1) - a/v/UTT)!.     (13) 

This suggests the following procedure:  Consider the set of all functions of 
one real variable.  For N >2, let the linear transformation LN be defined by 

LNf{u} *OLN U) / [u y/NAN -1) + fc/VOTT)] + /S^ («) / [«yfNTUr-D - .Won)]. 

For example, if f (u) = u, and a/v(u) =a (a constant), then 

LNf(u) = u yJN/M -1) + (a 6 - ß(d/y/Qr=D. 

Since 
P^^L^.jU), 

where  P^u) is either zero or one, according to the value of u. 
Letjfi/y} be an arbitrary sequence of functions, and let hN = PN -iN . (In 

the sequel, qN will be the approximation to PN, so that hN measures the differ- 
ence between the exact solution of Eq. 14 and its approximation.)  Let fe be an 
arbitrary positive integer.  From 

hk=Pk-Sk   and   PA+1 = ^1 Pk' 
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"; 

it follows that 

LM h m Pk+l ~ h+l 8k'' 

and, since    P,+1 = hk+1 + flA+] , it follows that 

Hence 

hM = LM kk+l ~ ^A+2 - Lk+2 SM), 
or 

**+2 -i*+2 ^i A* -^+2-^t2 «M) - LM {sM~LM gk). 

Repetition of this procedure gives rise to the following result: 
N 

^'hh-i-'-hA^k- L   Rr 
where ;' + 

R
N''SN-LNgN_1 

and, for fe+ 1< j < N 
Ri = h-----LhligrLjgl._1). 

function^ 0/ ^ ßi are P0SitiVe fUnCti0nS' With sum one' " foUovs that, for any 

S0 '^-ÄJfl/^-^-iW i for all j = 2, 3 Consequently, if 
oo 

.■_2   -00<U<M      ' /   /•*        ' 

converges, then 
N 

i=k*\ 

Ä C N™^ 
3ma11 Siml"y by ^'^ ' s"«'c'-"y M^e. regardless 

to ÄrwÄr U)XwÄr^xr {^} T r converges to zero as N becomes infinite. Proviaea that L^ L^,... L4+1 hj 

The preceding discussion may be summarized under two principles. 
First Principle 

that I 7j^ I rr? {Sf to apPr0!Iimale 'P^ '^ '» *«^ the condition 
A -OOTUKOO ' s/w   L/ «/-I ^ I converges. 

Second Principle 

The sequence {P^ - ^ will converge to zero if the derived ^^ 

iLNLN~l '■•Lk*l (/A-«pl   (A fixed) 

converges to zero as N becomes infinite. 
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■  ■    ■ 

it follows that 

and, since    Pk+l = ^ + h^ f it follows ^ 

Hence 

or 
A*t2  ^*+2**+l-^2-^2^1), 

**+2 »^2 ^ **-^2-^2 ^)-LM iek+l-LM gkh 

Repetition of this procedure gives rise to the following result: 

where 

and, for fe + 1 < / < N 

RN=SN-LNgN_1 

trh'-'L^igj-Lfg^). 

functitT ö/ and ^ are P0SitiVe fUnCti0nS' With SUm 0"e' " follows that, for any 

-oo<U<()g / '--oo<u<«  l/W|- 

S0 ' R>' ^ ..it.!«/(u) - L/ %-i W I for all/ = 2, 3, ....  Consequently, if 

H      lub     I g (a) - /   g. , („) 

converges, then 
1--2 

N 

E   «; 

of h» C "mlrbf Sma11 SlmP,y ^ taking ' *°m*™y *>**, regardes. 

converges to Zero as N becomes tofläto J hi" ^^-i-^i*. 
The preceding discussion may be simmari2ed under two principles 

First Principle 

«■at I S u'"^ IZTT W* aPPr0I!lmate {P*J 'rV to satisfy the condition /=2 -«<u<0o' "7w   L/ fy-i w i converges. 

Second Principle 

Th^l^ce {P, . „„, wm converge t0 zero if the ^^^ ^^^ 

lLNLN-l •••/WWA)i    (A fixed) 

converges to zero as N becomes infinite. 
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.... 

As noted earlier the conditions expressed in Eq. 9 imply that aju) shall 

e6 a'pZd'mo'rf gffUnCti?n 0f ^  Bef0re the tW0 ^ciples Just IXltlTL be apphed  more information about the asymptotic behavior oiaM is required 
Throughout the rest of this section it will be assumed that required. 

aN (u) = p + (cu/v/F)   + K (u.NVN 

ßN(u) * q-(cu/'/N)  - Kiu,N)/N (14) 

wherep   q  andc are constants, with p+ q = 1, and  X(u,N) is bounded, for u in 
any finite closed interval.  It might be remarked that for all the types of com- 
bat with which the author is familiar, Eq. 14 is satisfied. 

A preview of the process that will presently be carried through is perhaps 

£*l%F£8t' rf
Sinf fUnCti0n a 0f 0ne f6*1 variabIe wil1 be found that saüs- 

nH ft   \        Pt ^ termS 0f 0rder 1/N3/2 *  Specifically, it is proposed to find a function g such that t»*™»* ^ 

^-V»>«»»vW7örT) + [i/vw^)]|-/8^B)Ä|BvW7Örr^ (15) 

Thi^function, however, will not quite satisfy the boundary conditions demanded 

an «nfflTV Se?UenCe 0i function8 ifl/v («)} will be constructed from fl(«) that 
13  .vilVf    ^UndaiT lCnditi0nS dema^ed by E^ 6 and that s"ll satisfy Eq. 13 except for terms of the order of 1/^ .  Such a sequence will satisfy the 
conditions enunciated in the first principle 

ew^^TJ*™?6 Sh0W,; ^ Eq8- 9 &nd 14 imply that the conditions enunciated in the second principle are satisfied. 

First Part 

(since ai^rir860 t0 ^ * £UnCÜOn 8 8atisfying Eq- 15' which can ^ written 
M») is iu vmrrr)+(i/vövTDn _ ^j)+^(B) (glu ^/WZ1) _ [a/yMZTm _^)m0 (W3/2) 

Apply Taylor's theorem to the two differences that appear in this equation and 

(VV^V)ipb - qa) g» + 1/2N |[1 + 2(o *b)ülHU (p62 + ,«2) ^-t . o (1/^3/2). 

that JlürJ ^ recal!ed ihat when the variable « was introduced it was stated 
Tfllf    Z e t0 be deterir,ined later- At this point it is possible to impose 

T^o^vL\^rely'that the term invoiving ^ -^ - 
consequently 

p6 - 90 - 0; 

a - pk 

b-qk. 

(16) 

when fe is yet to be determined.  It should be borne in mind that Eq. 16 is, in 
fact, an implicit equation, since the choice of a and b affects the values of p and 
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...   .....  : 

q in general.   The specific example considered below will make this clear if it 
is not obvious already. 

With a= pfe and b = qk, the term involving 1/N can be simplified; for pb2 + 
qa2 = {pq2+ qp2) k2 = pqk2. Then the requirement that the term in 1/N must also 
vanish leads to the following differential equation. 

[1 + 2 (o + 6} cj *$' (u) + pgkZ g" (u) = 0 , 

the solution of which is 

g(u) = c,   / exp I - [1 T 2 (o + b) c]i
!!/(2pgA2)l dt 

(17) 

(18) 

where c-^ and Cg are arbitrary constants. 
It should now be observed that the product (a + b)c = fee is invariant, since 

c involves 1/ only through a factor of 1A.   This observation suggests the final 
determination for fe . Simply choose fe as Vl + 2(o + h)c/pq; the coefficient of 
-t2/2 in the exponent of Eq. 18 now becomes unity. Thus, n'tth these choices 
for a and b, it is seen that 

gU) ~ cl   f  exp(- «V2) dt. (19) 

Before proceeding further with the discussion of the general case it seems 
desirable to consider a specific example—one that arises from the classical 
Lanchester theory.  Suppose that 

a(m,n) =am/(am + ßn), and ß{m,n) = j3n/(0Cm + ßn), (20) 

where a and ß now denote two positive constants.  With N = ffl + n and u = (am - bn)/ 
Vm + n), it is found that 

and 

in which 

and 

aAr(u) = p + c (u/y/N)  + k(u,N)/N 

ßffiu)- q~eWW)  ~ Mu,N)/N, 

p = (Xb/(ab + ßa) , 

q = /?o/(a6 + ßa) , 

c =a/3(a + 6)/(a6 + /3a)2. 

These expressions are found by substituting Eq. 11 in amAam + ßn). and 
expanding in powers of \/M.  Equation 16 now becomes 

Otfe2-,1a2» 0. 

With a proper choice of signs it is seen that a =k,/ä, b = fe'/ß, where b' is a 
positive constant.  This fe* is not the same as the fe in Eq. 17. 

With these values for a and b it is noted that p =/ä/(/ä+/0), q =/J3/(/ö+ 
fß), and (a + j) c = l. Now with a = fe[/ä/(/ä+/0)], and b = fe [^/(^ä + ^)], Eq. 
17 becomes 

Sug- («) + [vS]57(Vor+ V^)]2 k2 g" («) = o. 
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The proper choice for k is, by the general theory, vr[l + 2(a +b)c j/pq , which here 
becomes fZ/-Jaß.   Then u=/3/^/ciß'[{•.räm - Jßn )//m + n]) and Eq. 19 holds, i.e., 

g<o) »Cj  / exp{-t2/2) dt. 

Second Part 

There now is left, in the general theory, the problem of choosing Cj and C2- 
There are actually many possible choices for Cj and C2, although they are all 
asymptotically equivalent.  Choose, for example, cl as 1/V2ür and C2 as -<».  It 
then turns out thatgU) (now independent of N) satisfies the boundary condition 
along the coordinate axes only asymptotically.  It is easy, however, by letting 
Cj and C2 depeud on N, to obtain a sequence of functions {3^(1*)} that actually sat- 
isfies the conditions that, if n =0, the value of g^(u) is 1, and, if m = 0, the value 
of iNU) is 0. 

To see how this may be done consider the situation that occurs on the line 
m + n = N. At the point (0,N) on this line (where P(0,N) = 0) u has the value -b^. 
Since naturally ^ is not to be 0, a(u) will be 0 only if C2 = -b\fN. Along this line 
m + n = N,u increases  steadily until the point (N,0) is reached, at which 
P( N,0) = 1.  At (N ,0), u has the value a ^T.  In order to obtain the proper value 
forg(u), namely, 1, Cj should be the reciprocal of 

a^N 

/ Wit. 

Thus, instead of simple constants for c-^ and C2, values that depend on N are 
chosen.  This leads to a consideration of the sequence of functions { g^u)}, 
where 

sNM = 
_-by/N I  L-"V/v 

for 

and 

-bSN < u < oVTv , 

rl for u>ay/tf ri for u>o 

10 for u < - by/W. 

Because 

lim   Nk     [   e-*t2dt=0 

for any positive numbers fe and x, it follows that this sequence of functions also 
satisfies the fundamental difference equation for P^u) to within terms of order 
l/N , just as did g(u). 

Third Part 

According to the preview given earlier in this section all that remains is 
to prove that LN Lyy^ . .. Ljt+1 (Pjt - 84)  approaches zero as N becoiuei» infinite. 
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Let, as before, hk denote PA - g^.  Now h^. is a function of one real variable, 
defined at the values of u corresponding to the lattice points on the line m + n = k. 
Specifically, hk is defined at all the numbers [-bk +.| (o + b)]/Jk, for j =0, ± 1, ±2, 
....   However (and fortunately), it is zero at most of these points.  In fact it is 
zero at every point except possibly the points [-bfe +j(a 4-b)]/\/F for j = 1, 2. . . ,, 

fk-l.   This follows from the way in whick (\k was made to obey the boundary con- 
ditions of Eq. 6, 

Let DktN denote L/yL^  . . . Lk+l   hk.  Since DkN = lNDkiN^, it is      ar 
that Dkjll is, for N >fe, a solution of the fundamental difference equation (Eq.   3). 
Consequently the value of Dk N at any number u is a certain linear combination 
of the values of hk, and since most of these are zero they can be written 

Dk.N^ =  L  Fi.k,N^ hk 
M V^ 

The point to be demonstrated is that F(ÄiW(tt) approaches zero as N becomes 
infinite. 

As a first step it is proposed to show that, if 

c*.yv(B)-(iJ/)
/WB)' 

then 

To this end observe that 
Fi,k,N{u) ° aA + l,[(a + h)' ~ M + 1)^\/*TT IF ^a + W/ - Wi + l)l/V*+T| 

(21) 
+jE5fc+1 i[(a + b)(i+1) - m + «i/v/rrri F ma + b){j+1) - m + «w* + 11, 

so that 

''..I.J
H)

 $ K+it[(
0 + 6V- W + Dl/V^-^! + ßM [[{a + «(.• + 1) - b{k +l)]/y/kTT])GktltN{u). 

But, by Eq. 9 the coefficient of GÄ+1 ^(u) is no greater than one. [If the 
coefficients here seem remote from Eq! 9 transform the coefficients here into 
<*ii,k - j + 1) and ß(j + l,k -j) by using Eq. 11; then apply Eq. 9.]  Thus, for every 
J' F/.A./vM   -  GA+i,/v(u)» and from this' it follows that G^ffiu)* S^y^u), 

'l&ext it is proposed to show chat Gr A,(u) can be made arbitrarily small, 
for fixed u, simply by taking r and N- r'sufficiently large. 

It is obvious from Eq. 14 that ar (u) will be sensibly constant on any bounded 
closed interval, if r is sufficiently large. Hence, as a little reflection will show, 
Gr yy (u) will be nea; the maximum term in a binomial distribution involving N - r 
trials with probability p of success in any one trial. But from the classical 
theorem of De Moivre and Laplace this is approximately l/vr[27r(N- r)pq], which 
is arbitrarily small if N - r is sufficiently large. This shows that GrN{u) can be 
made arbitrarily small by taking r and N - r sufficiently large. 

From the two stages of this discussion it now follows that L^ Lf^^ . . . 
Lk+i iPk - ak) approaches zero as N becomes infinite. 

_The foregoing proof shows that 0^ approaches zero at least as fast as 
l/v'N".  It may in fact approach zero even faster, as the following example shows. 

In the event that a{m,n) is not constant but actually increases with increasing 
in (and decreases with increasing n), the total contribution from any value of Pk - 
gk to all points on the line m + n = fe+lis less than one.  Thus, if a(m,n) = m/(m +n), 
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the total contribution of any point on the line m + n = fe to all points on the line m+n = 
k+ 1 is fe/(fe + i).   By induction the total contribution of this point on m +n = fe to all 
points on m+ u = N is fe/N.  Consequently in this case ükN approaches zero at least 
as fast as 1/N. 

Summary 

In this section the probability that the first side wins in generalized Lan- 
chester combat has been studied. With m combatants initially on the first side, 
and n combatants initially on the second side the probability that the first side 
wins is given approximately by 

I 
om-i-n 
Vm+n 

S-*'2 it 
/•aym+n 

p-b\lnnn 
s-*'* it (22) 

where a and b are constants to be determined by the relative effectivenesses of 
the two sides.  A simpler form of the approximation, but which does not give 
quite so accurate results, is 

am-bn 
*       1 \/m7n 

■*'* dt. (23) 

In the particular case of the classical Lanchester theory, where om/(am + (3n) 
gives the probability that the next casualty will occur on the second side, it is 
seen that 

J-    f •1^# 
-^2 *. 

or, more closely, 

f}Q 
3 V<X m " v/P" 

B-«
(2 dt 

•^1 
-Vi^ytSTn 

V^ 

e-*'* dt (25) 

approximates the probability that the first side wins. 
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CLASSICAL THEORY AND NUMERICAL EXAMPLES 

This section is devoted to two somewhat separate topics.  The first is the 
computation of (pim,n) and a(m,n) for the situation described in the manuscript 
by Lee and Harrison.     It will be shown that the probabilities of casualties in 
the type of combat discussed there satisfy Eq. 20, so that the probability that 
Force 1 wins is given exactly by Eq. 8, and approximately by Eq. 24 or 25. The 
second topic is the comparison, in some numerical examples, of the exact and 
approximate probabilities in the unfavorable circumstances that both m and n 
are small. 

The situation considered by Lee and Harrison is the following (with slight 
changes of notation): 

Two forces are engaged in combat.  Force 1 consists initially of m weapons. 
Force 2 consists initially of n weapons.  Each weapon of Force 1 fires at random 
according to the Poisson process with a mean firing rate of \ shots per unit time. 
Each weapon of Force 2 fires with a mean firing rate of ß shots per unit time. 
The single-shot kill probability of a weapon on Force 1 firing at a weapon on 
Force 2 is p; the single-shot kill probability of a weapon on Force 2 firing at a 
weapon on Force 1 is q. The engagement is continued until all weapons of one 
force or the other are destroyed. 

For a discussion of the Poisson process the reader is referred to Feller. 
By the well-known properties of the Poisson process it follows that, if there are 
m combatants in Force 1 each firing at a rate of \ shots per minute, then the 
probability that Force 1 fires exactly j shots during a time interval of t minutes 
is 

e-^'-KmktV/jl]. 

Since 1 - p is the probability that any one ot these shots produces no casualty, the 
probability that all j shots miss is (1 - p)'.  Hence, the probability that Force 1 
fires exactly j shots and all miss is 

-mAt .[mk(l-p)t]i/j\ 

Therefore the probability that Force 1 produces no casualties (regardless of the 
number of shots fired) during the time interval of t minutes is 

nXt UMl-pWV/!, 

or 
.-mAt    „mAU-p)« c « e • 

which equals e~m^p\ 
Thus it has now been shown that, if there are m members in Force 1, the 

probability of no casualties among Force 2 during a time interval of length t 
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minutes is e~mKPt ■   In the same way if there are n members in Force 2 the 
probability of no casualties among Force 1 during a time interval of length t 
minutes is e""^?1. 

Consequently the probability that, with m members on the first side and n 
members on the second side, there are no casualties on either side during a 
time interval of length t is exp [-{mXp + nßq) t].  Comparison of this with Eq. 2 
shows that 0(in,rt)= mXp+n/uq. 

The problem now is to compute a(m,n), which, it will be recalled from the 
first section, means the probability that if a casualty does occur it will occur on 
the second side. 

The probability of no casualties among Force 1 and at least one casualty 
among Force 2 during an Interval of t minutes is 

e-Wa-e-^P'). 

The derivative of this, for I =0, is mXp.  But, according to the general theory de- 
veloped in the first section, this must also be 

a(m,rt) • <^(m,n). 

Hence, 
a(m,n) = mApAmAp +nitq). 

Similarly, 
/i(m,n) = nßq/(mkp + njiq) . 

In summary then it has been shown that a(m,ri) and ßU.n) satisfy Eq. 20, 
with the constants a and ß equal to Xp and pq, respectively.  Therefore the prob- 
ability of winning in this type of combat can be computed as the solution of Eq. 
5, with the coefficients given by Eq. 20.  The explicit solution given by Eq. 8 can 
be used, or, the probabilities can be obtained successively from Eq. 5 directly. 
This latter method is the one actually used in the manuscript of Lee and Harrison 
previously cited. 

It is clear that the function given in Eq. 8 depends on the ratio of a to ß, 
and not on their separate values.  Let C =a/ß.  For various values of C, the 
values of P(m,n), rounded to three decimal places, are tabulated in the manu- 
script by Lee and Harrison.  These values have been rounded to two decimal 
places and provide the basis for the "exact" figures in Tables 1 and 2.  For 
Table 3, the "exact" data are computed directly from Eq. 5, with C =9. 

Tables 1, 2, and 3 provide a comparison between these exact values of 
P(m,n) and the approximate values of P(m,n) found by using Eq. 24 for C = 1, 
C = 2, and C = 9. The comparisons are made only in the most unfavorable cir- 
cumstances, when both m and n are small.  It is clear from the tables that, as 
soon as :ti + n = 7 or so, Eq. 24 should be applicable Instead of Eq. 8 for all ordi- 
nary purposes of computation, provided that l/9< C£9.  This agreement between 
the exact and approximate values of F(m,n) seems to be surprisingly good. 

In the tables the lower entry in each pair of lines is the exact value of 
P(m,n), rounded to two decimal places.  The upper entry in each square is the 
approximate value, computed by Eq. 24, also rounded to two decimal places. 
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Table 1 Table 2 

COMPARISON OF EXACT 
AND APPROXIMATE VALUES3 

OF P(m,n)FÜRC = l 

COMPARISON OF ^XACT 
AMD APPROXIMATE VALUES8 

OF P(m,n)FORC =2 

0 1 2 3 4 5 

n _ 0.04 0.01 0.00 0.00 0.00 

- U.OU U.ÜU 0.00 O.OU Ö.ÖÖ 

1 
0.'J6 0.50 0.16 0.04 0.01 0.00 

1.00 0.50 0.17 0.04 0.01 0.00 

0.99 0.04 0.50 0.22 0.08 0.02 

1.00 0.83 0.50 0.22 0.08 0.02 

3 
1.00 0.96 0.78 0.50 0.26 0.11 

1.00 0.96 0.78 0.50 0.26 0.11 

4 
1.00 0.99 0.92 0.74 0.50 0.28 

1.00 0.99 0.92 0.74 0.50 0.28 

5 
1.00 1.00 0.98 0.89 0.72 0.50 

1.00 1.00 0.98 0.89 0.72 0.50 

aThc upper figure in each pair of lines is the 
approximation, computed from Kq. 24.   The lower 
figure is the exact value, computed from Kq. 8. 
All data are rounded to two decimal places. 

X 0 1 2 3 4 5 

0 
0.06 0.01 0.00 0.00 0.00 

- 0.00 0.00 0.00 0.00 0.00 

1 
0.97 0.67 0.34 0.12 0.04 0.01 
1.00 0.67 0.33 0.13 0.04 0,01 

2 
1.00 0.94 0.72 0.47 0.25 0.12 
1.00 0.93 0.73 0.48 0.26 0.12 

3 
1.00 0.99 0.94 0.77 0.55 0.35 
1.00 0.99 0.93 0.78 0.57 0.37 

4 
1.00 1.00 0.98 0.93 0.80 0.63 
1.00 1.00 0.9C 0.93 0.81 0.64 

5 
1.00 1.00 1.00 0.98 0.93 0.83 
1.00 1.00 1.00 0.98 0.93 0.83 

aThe upper figure in each pair of lines is the 
approximation, computed from Kq. 24. The lower 
figure is the exact value, comp"*eJ frum Kq. 8. 
All data are rounded to two -'.icimr ! places. 

Table 3 

COMPARISON OF EXACT 
AND APPROXIMATE VALUES8 

OF P(m.n)FOR C=9 

X 0 

  

1 2 3 4 5 

0 
_ 0.16 0.08 0.04 0.02 0.01 
- 0.00 0.00 0.00 0.00 0.00 

i 
1.00 0.92 0.72 0.50 0.33 0.21 
1.00 0.90 0.74 0.41 0.29 0.18 

2 
1.00 1.00 0.98 0.91 0.79 0.65 
1.00 0.99 0.97 0.89 0.78 0.65 

3 
1.00 1.00 1.00 0.99 0.97 0.92 
1.00 1.00 1.00 0.99 0.96 0.91 

4 
1.00 1.00 1.00 1.00 1.00 0.99 
1.00 1.00 1.00 1.00 1.00 0.98 

5 
1.00 1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 1,00 
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"The upper figure in each pair of lines is the 
approximation, computed from Kq. 24. The lower 
figure is the exact value, computed from Kq. 8. 
All data are rounded to two decimal places. 
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